Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans.
نویسندگان
چکیده
Mitochondrial transcription factor A (mtTFA) is a key activator of mitochondrial transcription in mammals. It also has a role in mitochondrial DNA (mtDNA) replication, since transcription generates an RNA primer necessary for initiation of mtDNA replication. In the mouse, testis-specific mtTFA transcripts encode a protein isoform that is imported to the nucleus rather than into mitochondria of spermatocytes and elongating spermatids. We now report molecular characterization of human mtTFA (h-mtTFA) expression in somatic tissues and male germ cells. Similarly to the mouse, analysis of cDNAs and Northern blots identified abundant testis-specific transcript isoforms generated by use of alternate transcription initiation sites. However, unlike the mouse, none of the testis-specific transcripts predicts a nuclear protein isoform, and Western blot analysis identified only the mitochondrial form of h-mtTFA in human testis. Immunohistochemistry and in situ were used to compare the distribution of mtTFA protein, testis-specific mtTFA transcripts, mtDNA and mtRNA in sections of human testis. Our results show that the mtTFA protein and mtDNA exhibit parallel gradients with high levels in undifferentiated male germ cells and low levels or an absence in different male germ cells. Testis-specific transcripts exhibit the opposite pattern, suggesting that in both humans and mice, these testis-specific mtTFA transcripts down-regulate mtTFA protein levels in mammalian mitochondria. Our findings demonstrate that mtTFA does not have a critical role in the nucleus, suggest a mechanism for reducing mtDNA copy number during spermatogenesis and have implications for the understanding of maternal transmission of mtDNA.
منابع مشابه
I-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice
The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...
متن کاملP-30: The Investigation of Transcript Expression Level of Mitochondrial Transcription Factor A (TFAM) during In Vitro Maturation (IVM) in Single Human Oocytes
Background In vitro maturation (IVM) of human oocytes has acquired increasing attention in infertility treatment with great promise. This technique is an alternative conventional in vitro fertilization-embryo transfer (IVF-ET), and can be reduced the side effects of gonadotropin stimulation such as ovarian hyperstimulation (OHSS). Oocyte maturation is a complex process including cytoplasmic and...
متن کاملReactive oxygen species level, mitochondrial transcription factor A gene expression and succinate dehydrogenase activity in metaphase II oocytes derived from in vitro cultured vitrified mouse ovaries
The aim of this study was to evaluate the effects of ovarian tissue vitrification and two-step in vitro culture on the metaphase II (MII) oocyte reactive oxygen species (ROS) level, mitochondrial transcription factor A (TFAM) expression and succinate dehydrogenase (SDH) activity. After collection of neonatal mouse ovaries, 45 ovaries were vitrified and the others (n = 45) were...
متن کاملThe role of Musashi protein in spermatogenesis and male infertility
Background: Inactivation of transcription occurs during two phases of spermatogenesis. First, in spermatocytes entering the primary meiosis and the second in round and elongating spermatids. These stages of inactivated transcription demand extensive regulation of translation. Therefore, presence of the control on gene expression during spermatogenesis seems essential. In the cases that post-tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 6 2 شماره
صفحات -
تاریخ انتشار 1997